Finite mixture models with applications to demography.

ABSTRACT: This thesis intends to be methodological. We propose a general framework to incorporate unobserved heterogeneity in the statistical analysis that can be easily applied in demographic research. Before introducing the finite mixture framework, we revise the maximum likelihood estimation in...

全面介绍

Saved in:
书目详细资料
主要作者: Dias, Jose Goncalves
格式: 未知
语言:English
出版: c2001.
主题:
在线阅读:Visit NHRC Library
标签: 添加标签
没有标签, 成为第一个标记此记录!
LEADER 02075 a2200265 4500
003 OSt
005 20220906184545.0
008 190213b ||||| |||| 00| 0 eng d
952 |0 0  |1 0  |2 NLM  |4 0  |6 THS_00083_DIA_2002_000000000000000  |7 0  |9 556  |a NHRC  |b NHRC  |d 2012-07-15  |l 0  |o THS-00083/DIA/2002  |p THS-00083  |r 2012-07-15  |w 2012-07-15  |y TR 
999 |c 550  |d 550 
060 |a THS-00083 
100 |a Dias, Jose Goncalves.  |9 1715 
245 |a Finite mixture models with applications to demography. 
260 |c c2001. 
300 |a 61p.  
500 |a Thesis Report. 
520 |a ABSTRACT: This thesis intends to be methodological. We propose a general framework to incorporate unobserved heterogeneity in the statistical analysis that can be easily applied in demographic research. Before introducing the finite mixture framework, we revise the maximum likelihood estimation in the homogeneous case. Then, we extend the heterogeneous case, assuming and unknown number of components in the finite mixture for independent observations. Furthermore, we extend this framework to accommodate dependent observations following a Markov chain (finite mixture of Markov chains). Finally, a model defined for static (cross-sectional) and dynamic (longitudinal) variables is proposed. These models were implemented in MATALAB5.3. The models defined are illustrated, using the data from Brazil Demographic and Health Survey (BDHS) 1996, focusing on women's attitudes towards family planning and contraceptive use dynamics. Individual respondents (women) were segmented based on different attitudes reported towards family planning and contraceptive use dynamics. Key words : Finite mixture models, Latent class analysis, Segmentation techniques, Markov models, Contraceptive use dynamics  
546 |a Eng. 
650 |a Finite mixture models.  |9 1787 
650 |a Latent class analysis.  |9 1788 
650 |a Segmentation techniques.  |9 1789 
650 |a Markov models.  |9 1790 
650 |a Contraceptive use dynamics.  |9 1791 
856 |u http://nhrc.gov.np/contact/  |y Visit NHRC Library  
942 |2 NLM  |c TR